
EasyCODE

Customization

EasyCODE Version 6.xE, 06-20-1996

© Copyright Siemens AG Österreich (Siemens in Austria) PSE

EasyCODE Table of Contents

Table of Contents

TABLE OF CONTENTS

CUSTOMIZATION

1. INI/CFG ENTRIES
1.1. LockDrives

1.2. UnLockDrives

1.3. SuppressSourceConvMsg

1.4. SuppressSPXConvMsg (SuppressSPConvMsg)

1.5. SuppressJETConvMsg

1.6. SuppressETFConvMsg

1.7. FtAvailable

1.8. SourceFileFormat

1.9. EtfFileFormat

1.10. EtfWrapSDF

1.11. JobLog

1.12. DeleteWorkFiles

1.13. Compiler

1.14. Parser

1.15. ParserDebugFile

1.16. FtShowIconic

1.17. RetainReplaceCheckboxState

1.18. PushDownClasses

1.19. PushDownFunctions

1.20. PrintFileStandard

1.21. PrintReportStandard

1.22. InitialIndent

1.23. BeginComment

1.24. EndComment

1.25. BeginObject

1.26. EndObject

1.27. Sequence

1.28. BeginIteration

1.29. EndIteration

1.30. BeginOption

1.31. EndOption

1.32. BeginSelection

1.33. EndSelection

Technical Documentation 2

EasyCODE Table of Contents

1.34. SeparateCases

1.35. SuppressDoInProcedureCall

1.36. SuppressLastReturnInProcedure

1.37. Ctl3D

1.38. FtDirectory

1.39. LockSourceOnWarnings

1.40. CompressBlanks

1.41. OpenFileListLength

1.42. InsertFileListLength

1.43. FtWFTRecSize

1.44. FtWFTRecForm

1.45. DataPool

1.46. RestartLogic

1.47. Resource

1.48. ProgramCall

1.49. SpecialConditions

1.50. ErrorHandling

1.51. Tabs

1.52. RemoveSpaces

1.53. Program

1.54. BeginEnd

1.55. Trap

1.56. Type

1.57. Function

1.58. PrivateFunction

1.59. Sub

1.60. PrivateSub

1.61. SingleIfWithoutElse

1.62. SingleIfWithElse

1.63. BlockIf

1.64. MultipleIf

1.65. Then

1.66. ElseIf

1.67. Else

1.68. SelectCase

1.69. Case

1.70. CaseElse

1.71. For

1.72. While

1.73. DoUntil

1.74. DoWhile

Technical Documentation 3

EasyCODE Table of Contents

1.75. Do

1.76. LoopUntil

1.77. LoopWhile

1.78. Ex<n>

1.79. Stmt<n>

1.80. CallException

1.81. SearchException

1.82. MoveCommentIntoProgram

1.83. AssignCommentToNextDivision

1.84. AssignCommentToNextSection

1.85. AssignCommentToNextParagraph

1.86. SeperateCommentBeforeConstruct

1.87. NestCommentIntoLevel

1.88. AllowSentenceInAArea

1.89. ExpandException

1.90. LineContinuation

1.91. OldMouseInterface

1.92. NestedComments

1.93. TempJV

1.94. ParserWINAPI

1.95. Keyword<n>

1.96. GenEndProgram

1.97. SaveAfterGen

1.98. SaveAfterGenAll

1.99. PrtType

1.100. PrtArea

1.101. PrtLowerSegments

1.102. PrtMaxDepth

1.103. PrtPageHeader

1.104. PrtStartPageNum

1.105. PrtFitIntoPage

1.106. PrtMinFontSize

1.107. PrtPreviewList

1.108. RepPaths

1.109. RepComments

1.110. RepDocs

1.111. RepVarRefList

1.112. RepAlphaList

1.113. CtrlZ

1.114. ECComment (SPX parser)

1.115. ECComment

Technical Documentation 4

EasyCODE Table of Contents

1.116. AltECComment

1.117. AlignTextLines

1.118. WrapComments

1.119. CriticalPrograms

1.120. InLineComment

1.121. SdfDoorsDll

1.122. PrtSaveSpace

1.123. PushDownVar

1.124. PushDownConst

1.125. PushDownType

1.126. PushDownProcedureBody

1.127. PushDownFunctionBody

1.128. PushDownInterface

1.129. PushDownInitialization

1.130. PushDownImplementation

1.131. OnlineSFCheck

1.132. EncloseResource

1.133. EncloseProgramCall

1.134. CaseAsFrames

1.135. HelpFile<n>

1.136. EditRedimX

1.137. EditRedimY

1.138. InlineAssembler

1.139. PrintMono

1.140. Tab2Space

1.141. BeepOnLines

1.142. FirstCol

1.143. LastCol

1.144. IgnoreEntry

1.145. LowerText

1.146. PROC_Level

1.147. THEN_Level

1.148. ELSE_Level

1.149. WHEN_Level

1.150. WHILE_Level

1.151. TO_Level

1.152. UNTIL_Level

1.153. ENTRY_Level

1.154. EmptyLineBeforeECComment

1.155. RemoveEmptyLines

1.156. BrowserSupportDef

Technical Documentation 5

EasyCODE Table of Contents

1.157. BrowserSupportRef

1.158. BrowserDLL

1.159. AddInMenu

1.160. AddInCmd<n>

1.161. MouseCmd<n>

1.162. SpecialLines

1.163. PrintDelay

1.164. PreprocessorColumn

1.165. FtCommand

1.166. JavaMode

2. COMMAND LINE OPTIONS AND PARAMETERS
2.1. <file_name>

2.2. Embedding

2.3. Initialize

2.4. Print

2.5. PrintStructure

2.6. Report

2.7. Line/Construct

2.8. Inifile

2.9. Generate

2.10. GenerateAll

2.11. Save

2.12. Export

2.13. OpenFileDlg

2.14. ReadOnly

2.15. Project

2.16. AddIn

Technical Documentation 6

EasyCODE Table of Contents

Customization
This paper describes some ways of customizing EasyCODE to user requirements, which are not contained in
the standard user documentation (Help, user manual).

1 Ini/Cfg Entries
The following Ini/Cfg entries cannot be modified using the EasyCODE user interface, but they, in turn, may
affect application behavior considerably.

2 LockDrives
Components: All structure diagram editors
Version: V3.5 and higher versions
File: EASY-<COMP>.INI
Section: [Network]
Value: Sequence of letters indicating drives
Default: None

Example: LockDrives=CDEF

Consequences: By default, the EasyCODE network version checks network drives, but not local drives, for
multiple access. This entry modifies this predefined setting in that the specified drives will
also be checked for multiple access, no matter whether they are local or network drives. All
available drives may be specified as well as the character '\' which controls access
authorization for files addressed by \\<server>\<share\<path>\<filename> instead of logical
drives.

3 UnLockDrives
Components: All structure diagram editors
Version: V3.5 and higher versions
File: EASY-<COMP>.INI
Section: [Network]
Value: Sequence of letters indicating drives
Default: None

Example: UnLockDrives=MNO

Consequences: By default, the EasyCODE network version checks network drives for multiple access. If e.g.
in program linking share conflicts occur because programs not designed for network use are
working on the file currently opened by EasyCODE, this situation may be modified by the
UnlockDrives entry in that EasyCODE will not check the specified drives for multiple
access. All available drives may be specified as well as the character '\' which controls access
authorization for files addressed by \\<server>\<share\<path>\<filename> instead of logical
drives.

4 SuppressSourceConvMsg
Components: DS, COB, SPX
Version: V3.5 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: no

Example: SuppressSourceConvMsg=yes

Consequences: The message displayed when a source file is opened or inserted will be suppressed when this
entry is set to yes, true or 1.

Technical Documentation 7

EasyCODE Table of Contents

5 SuppressSPXConvMsg (SuppressSPConvMsg)
Components: All SE except SP, SPX, DS
Version: V5.0 and higher versions (V3.5 up to V4.0x)
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: no

Example: SuppressSPXConvMsg=yes (SuppressSPConvMsg=yes)

Consequences: The message displayed when an SPX(SP) file is opened or inserted will be suppressed when
this entry is set to yes, true or 1.

6 SuppressJETConvMsg
Components: PET
Version: ab V5.0
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: no

Example: SuppressJETConvMsg=yes

Consequences: The message displayed when a JET file is opened or inserted will be suppressed when this
entry is set to yes, true or 1.

7 SuppressETFConvMsg
Components: All structure diagram editors
Version: V4.0 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: no

Example: SuppressETFConvMsg=yes

Consequences: The message displayed when an ETF file is opened or inserted will be suppressed when this
entry is set to yes, true or 1.

8 FtAvailable
Components: All structure diagram editors
Version: V3.5 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: yes

Example: FtAvailable=yes

Consequences: File-transfer support in the structure diagram editors will be activated or deactivated.
Usually, this entry is made by the SETUP program according to the option specified there. It
is, however, possible to modify it later, so that file-transfer support may be activated or
deactivated without installing EasyCODE again. The default entries made by the SETUP
program are no for all components.

Technical Documentation 8

EasyCODE Table of Contents

9 SourceFileFormat
Components: JET, PET
Version: ab V5.01
File: EASY-<COMP>.INI
Section: [Settings]
Value: OEM|ANSI
Default: OEM

Example: SourceFileFormat=ANSI

Consequences: Specifies whether the JOB files are to be OEM or ANSI coded. Will be evaluated when JOB
files are generated, exported or imported (Generate, Open, Insert File).

10 EtfFileFormat
Components: All structure diagram editors
Version: V4.0 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: OEM|ANSI
Default: OEM

Example: EtfFileFormat=ANSI

Consequences: Specifies whether the ETF files are to be OEM or ANSI coded. Will be evaluated when ETF
files are exported or imported (Open, Insert File).

11 EtfWrapSDF
Components: JET, PET
Version: V4.0 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: yes

Example: EtfWrapSDF=no

Consequences: Specifies whether SDF commands and statements are word wrapped according to the
representation in the structure diagram and the generated job when exported. Otherwise one
single line will be exported.

12 JobLog
Components: JET, PET
Version: V3.5x, V4.0x
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: no

Example: JobLog=yes

Consequences: Specifies whether additional commands for calling the JOBLOG utilities are generated. Only
appropriate for computing centers using these utilities. (Due to the implementation of the
LOGON/LOGOFF exits in the operating system this option is dropped in EasyCODE Version
5.0 and higher).

13 DeleteWorkFiles
Components: JET, PET
Version: V3.5 and higher versions

Technical Documentation 9

EasyCODE Table of Contents

File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: no

Example: DeleteWorkFiles=yes

Consequences: Specifies whether additional command for deleting workfiles are generated if the procedure
contains the SDF command ASSIGN-OUTPUT-FILE (assignment of workfiles). Only
appropriate for computing centers where these commands are available. The commands are
generated only in the normal end (not within the abnormal end) of the procedure.

14 Compiler
Components: COB
Version: V3.0 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: VISCOB|none
Default: none

Example: Compiler=VISCOB

Consequences: Specifies whether a syntax check may be carried out by the compiler during file editing or
generation. Makes sense only if the Visual COBOL compiler is used.

15 Parser
Components: COB, DS, SPX
Version: V3.51 and higher versions
File: EASY-<COMP>.INI for COB and DS, configuration file (.CFG) for SPX
Section: [Settings] for COB and DS, [ParseOptions] for SPX
Value: Filename of parser DLL
Default: No such entry. In this case, EasyCODE(COB) will use the Visual COBOL parser (EASY-

PAR.DLL) and EasyCODE(DS) will use the BNF parser (EASY-BNF.DLL), which are
stored in the EasyCODE installation directory. There is no such default setting in
EasyCODE(SPX); in this case, no parser will be called, and, if the file is neither an SPX nor
an ETF file, a corresponding error message will appear ("Data in <file> do not have
EasyCODE(<component>) format.").

Example: Parser=EASY-XBS.DLL

Consequences: Specifies which parser is to be used for analyzing source files.

Notes: In V5.0 and higher versions of EasyCODE(COB), a new EasyCODE-internal COBOL parser
providing exended functions will be available by default. The INI entry required for this new
parser (Parser=EASY-CBL.DLL) will be made automatically during the Setup procedure.
If the „Parser“ entry is not empty in EasyCODE(COB) V5.0 and higher versions, i.e. if the
Visual COBOL parser is not used, the parser will be loaded when files are inserted, if the file
in question is a source file. (The parsing of incomplete sources will not be supported by the
Visual COBOL parser.)

Technical Documentation 10

EasyCODE Table of Contents

16 ParserDebugFile
Components: COB, DS, SPX
Version: V3.51 and higher versions
File: EASY-<COMP>.INI for COB and DS, configuration file (.CFG) for SPX
Section: [Settings] for COB and DS, [ParseOptions] for SPX
Value: Filename of a protocol file
Default: No such entry.

Example: Parser=EASY-XBS.DLL

Consequences: This entry is used for debugging self-designed parsers. If this entry exists, EasyCODE will
create a protocol file containing everything delivered by the parser to the parser interface.

17 FtShowIconic
Components: All structure diagram editors, EasyFT
Version: V4.0 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: yes

Example: FtShowIconic=no

Consequences: This entry is evaluated for the Intrasys file transfer system WFT only and specifies whether
WFT is to display the file-transfer window as an icon.

18 RetainReplaceCheckboxState
Components: All structure diagram editors
Version: V4.0 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: yes

Example: RetainReplaceCheckboxState=no

Consequences: Usually, when you press the Ok button in the Search/Replace dialog window, the states or
contents of all boxes in this dialog window will be stored until the dialow window is opened
again. This entry modifies the "¨ and replace with" check box behavior in that its state will
not be stored, i.e. this box will never be checked when the dialog window is opened.

19 PushDownClasses
Components: C++
Version: V4.0 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: yes

Example: PushDownClasses=no

Consequences: Specifies whether classes (class, struct, union) are to be pushed down to a lower level
automatically when a source is analyzed for the first time.

Technical Documentation 11

EasyCODE Table of Contents

20 PushDownFunctions
Components: C, C++
Version: V4.0 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: yes

Example: PushDownFunctions=no

Consequences: Specifies whether functions are to be pushed down to a lower level automatically when a
source is analyzed for the first time.

21 PrintFileStandard
Components: All structure diagram editors, SD
Version: V4.0 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: yes

Example: PrintFileStandard=no

Consequences: Specifies whether the file is to be printed using the default options chosen in the Print dialog
window (default) when the application is started with the /print option in the command line ,
or whether the Print dialog window is to be opened so that the printing options can be
modified. This applies also to drag&drop printing starting from the File Manager or to the
printing of EasyCODE supplementary documents in a communication plan.

22 PrintReportStandard
Components: SD
Version: ab V5.01
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: yes

Example: PrintReportStandard=no

Consequences: Specifies whether the default report options (specified in the Ini-file with the "Rep…"
entries) or interactive with the Report dialog window should be taken when you start the
application with the /Report option in the command line.

23 InitialIndent
Components: DS (for SPX see description of the .CFG file)
Version: V4.0 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: positive, whole number or 0
Default: 0

Example: InitialIndent=3

Consequences: Specifies the initial indent for file generation.

Technical Documentation 12

EasyCODE Table of Contents

24 BeginComment
Components: DS
Version: V4.0 and higher versions
File: EASY-<COMP>.INI
Section: [SyntaxStrings]
Value: character string
Default: '*'

Example: BeginComment='$$$'

Consequences: For redefining BNF symbols of syntactical relevance, will be taken into account when BNF
files are generated or analyzed.

25 EndComment
Components: DS
Version: V4.0 and higher versions
File: EASY-<COMP>.INI
Section: [SyntaxStrings]
Value: character string
Default: '*'

Example: EndComment='$$$'

Consequences: For redefining BNF symbols of syntactical relevance, will be taken into account when BNF
files are generated and analyzed.

26 BeginObject
Components: DS
Version: V4.0 and higher versions
File: EASY-<COMP>.INI
Section: [SyntaxStrings]
Value: character string
Default: '='

Example: BeginObject='::='

Consequences: For redefining BNF symbols of syntactical relevance, will be taken into account when BNF
files are generated or analyzed.

27 EndObject
Components: DS
Version: V4.0 and higher versions
File: EASY-<COMP>.INI
Section: [SyntaxStrings]
Value: character string
Default: ''

Example: EndObject=';'

Consequences: For redefining BNF symbols of syntactical relevance, will be taken into account when BNF
files are generated or analyzed. The BNF does not provide end object symbols, and therefore
they are not supported at present. The entry is reserved for future versions.

Technical Documentation 13

EasyCODE Table of Contents

28 Sequence
Components: DS
Version: V4.0 and higher versions
File: EASY-<COMP>.INI
Section: [SyntaxStrings]
Value: character string
Default: '+'

Example: Sequence='&&'

Consequences: For redefining BNF symbols of syntactical relevance, will be taken into account when BNF
files are generated or analyzed.

29 BeginIteration
Components: DS
Version: V4.0 and higher versions
File: EASY-<COMP>.INI
Section: [SyntaxStrings]
Value: character string
Default: '{'

Example: BeginIteration='<<'

Consequences: For redefining BNF symbols of syntactical relevance, will be taken into account when BNF
files are generated or analyzed.

30 EndIteration
Components: DS
Version: V4.0 and higher versions
File: EASY-<COMP>.INI
Section: [SyntaxStrings]
Value: character string
Default: '}'

Example: EndIteration='>>'

Consequences: For redefining BNF symbols of syntactical relevance, will be taken into account when BNF
files are generated or analyzed.

31 BeginOption
Components: DS
Version: V4.0 and higher versions
File: EASY-<COMP>.INI
Section: [SyntaxStrings]
Value: character string
Default: '('

Example: BeginOption='<'

Consequences: For redefining BNF symbols of syntactical relevance, will be taken into account when BNF
files are generated or analyzed.

Technical Documentation 14

EasyCODE Table of Contents

32 EndOption
Components: DS
Version: V4.0 and higher versions
File: EASY-<COMP>.INI
Section: [SyntaxStrings]
Value: character string
Default: ')'

Example: EndOption='>'

Consequences: For redefining BNF symbols of syntactical relevance, will be taken into account when BNF
files are generated or analyzed.

33 BeginSelection
Components: DS
Version: V4.0 and higher versions
File: EASY-<COMP>.INI
Section: [SyntaxStrings]
Value: character string
Default: '['

Example: BeginSelection='??'

Consequences: For redefining BNF symbols of syntactical relevance, will be taken into account when BNF
files are generated or analyzed.

34 EndSelection
Components: DS
Version: V4.0 and higher versions
File: EASY-<COMP>.INI
Section: [SyntaxStrings]
Value: character string
Default: ']'

Example: EndSelection='??'

Consequences: For redefining BNF symbols of syntactical relevance, will be taken into account when BNF
files are generated or analyzed.

35 SeparateCases
Components: DS
Version: V4.0 and higher versions
File: EASY-<COMP>.INI
Section: [SyntaxStrings]
Value: character string
Default: '|'

Example: SeparateCases='/'

Consequences: For redefining BNF symbols of syntactical relevance, will be taken into account when BNF
files are generated or analyzed.

36 SuppressDoInProcedureCall
Components: xBASE parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: no

Technical Documentation 15

EasyCODE Table of Contents

Example: SuppressDoInProcedureCall=yes

Consequences: Specifies whether the DO in the procedure call of a construct is to be suppressed or added.
(Should be analogous to the generation of the procedure-call construct: yes if the DO is to be
added automatically during the generation process, otherwise no.)

37 SuppressLastReturnInProcedure
Components: xBASE parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: yes

Example: SuppressLastReturnInProcedure=no

Consequences: Specifies whether the RETURN at the end of a procedure in a structure diagram is to be
suppressed or added. (Should be analogous to the generation of the procedure construct: yes
if the RETURN is to be added automatically during the generation process, otherwise no.)

38 Ctl3D
Components: All structure diagram editors, SD, EasyFT
Version: V4.0 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: no

Example: Ctl3D=yes

Consequences: Specifies whether the 3D versions of the dialog and message windows are to be used. (During
the EasyCODE installation, the SETUP program automatically selects the 3D look for all
EasyCODE components to be installed.)

39 FtDirectory
Components: All structure diagram editors, EasyFT
Version: V4.0 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: directory name
Default: none

Example: FtDirectory='c:\usr\ft'

Consequences: Specifies the directory from which the file transfer systems WFT BAM, WFT TCP/IP or
FTOS will be started. (Attention: the entry is valid for these file transfer products only!) This
entry overwrites all existing settings concerning the environment variables WFTDIR or
FTC97. Therefore, the following strategy is used: If the INI entry FtDirectory is not empty,
its contents will be interpreted as the directory name and used for starting WFT.EXE or
FTD.EXE. If the entry is empty, the contents of the respective environment variables will be
used. If these are empty, too, file transfer will be started without a specified path name, the
EXE file must then be included in the DOS path statement. The entry FtDirectory is therefore
used for starting a file transfer regardless of the PATH variable or special environment
variables.

Technical Documentation 16

EasyCODE Table of Contents

40 LockSourceOnWarnings
Components: C, C++
Version: V4.0 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: ask|yes|no|true|false|1|0
Default: ask

Example: LockSourceOnWarnings=no

Consequences: Specifies how to proceed with the source to be opened in case of warnings (not errors) during
file analysis in the network version of the components mentioned above. If the editor to be
used for displaying the source file is configurated, the user must decide whether EasyCODE
or the specified editor is to open the file in read-and-write mode. The other application may
then display the file in read-only mode. If the default setting (LockSourceOnWarnings=ask)
is chosen, the following message will appear: "File <sourcefile> must be opened with write-
protection either in EasyCODE(<COMP>) or in the editor. Write-protection in
EasyCODE(<COMP>)?". Each time, the user may decide how to proceed. The INI entry
LockSourceOnWarnings=yes specifies that the file will always be opened by EasyCODE in
the read-and-write mode and by the editor in the read-only mode, and the message will not be
displayed. The INI entry LockSourceOnWarnings=no specifies that the file will always be
opened by EasyCODE in the read-only mode and by the editor in the read-and-write mode,
and the message will not appear.

41 CompressBlanks
Components: COB
Version: V4.0
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: yes

Example: CompressBlanks=no

Consequences: Specifies whether a sequence of blanks is to be replaced with tabs (one tab corresponding to
eight blanks) when a COBOL source is generated. The purpose of this compressing
procedure is a reduction of the file size. Usually, this procedure has no further consequences,
since the tabs will again be replaced with the corresponding number of blanks by the COBOL
compiler or the file transfer system. The default setting is therefore 'yes'. If, however,
problems should occur because of the file transfer system and/or the COBOL compiler in use,
the compressing procedure may be suppressed by this INI entry.
Note: In version 5.0 and higher versions of EasyCODE(COB), this option will be provided in
the user interface („Source attributes...“ command in the „Options“ menu: „Replace blanks
with TABs“ button).

42 OpenFileListLength
Components: All structure diagram editors, SD
Version: V5.0
File: EASY-<COMP>.INI
Section: [RecentFileList]
Value: number between 0 and 9
Default: 4

Example: OpenFileListLength=9

Consequences: Specifies the number of files opened last which will be added to the File menu to be opened
directly.

Technical Documentation 17

EasyCODE Table of Contents

43 InsertFileListLength
Components: All structure diagram editors
Version: V5.0
File: EASY-<COMP>.INI
Section: [RecentFileList]
Value: number between 0 and 9
Default: 4

Example: InsertFileListLength=9

Consequences: Specifies the number of files inserted last which will be added to the Insert menu to be
inserted directly.

44 FtWFTRecSize
Components: All structure diagram editors, EasyFT
Version: V5.0 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: positive, whole number
Default: none

Example: FtWFTRecSize=1024

Consequences: Specifies the RecordSize for the remote file, if WFT is used as your file transfer system. If
this entry does not exist, WFT will implicitly use a default value. If such an entry exists, its
value will be given to WFT as an additional parameter when WFT is loaded.

45 FtWFTRecForm
Components: All structure diagram editors, EasyFT
Version: V5.0 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: u|v|f
Default: none

Example: FtWFTRecForm=u

Consequences: Specifies the RecordForm for the remote file, if WFT is used as your file transfer system. If
this entry does not exist, WFT will implicitly use a default value. If such an entry exists, its
value will be given to WFT as an additional parameter when WFT is loaded.

46 DataPool
Components: JET, PET
Version: V2.01 (JET) resp. V5.0 (PET)and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value (JET): Name of the Datapool program
Value (PET): User-ID of the Datapool server
Default: none

Example (JET): DataPool=$A.B0X085X
Example (PET): DataPool=$A

Consequences: If the entry is specified, the option Datapool is offered when editing Resources or conditions.
In PET the entry SpecialCondition must be set to yes|1|true also. Starting from version V6.0
the value of this entry is put into the corresponding dialog box when editing a construct of
this type the first time. (In earlier versions the value of this entry has been used only when
generating the structure diagram.)
The leading $ for the User-ID of the datapool server in PET is optional, it will not be shown
in the structure diagram and not be generated.

Technical Documentation 18

EasyCODE Table of Contents

47 RestartLogic
Components: PET
Version: ab V5.0
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: no

Example: RestartLogic=yes

Consequences: Specifies whether the condition "Restart mode" and the constructs "Jump to restart" and
"Restart" should be offered. The entry SpecialCondition must be set to yes|1|true also.

48 Resource
Components: PET
Version: ab V5.0
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: no

Example: Resource=yes

Consequences: Specifies whether the construct "Resource" should be offered.

49 ProgramCall
Components: PET
Version: ab V5.0
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: no

Example: ProgramCall=yes

Consequences: Specifies whether the construct "Program call" should be offered.

50 SpecialConditions
Components: PET
Version: ab V5.0
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: no

Example: SpecialConditions=yes

Consequences: Specifies whether the conditions File(Existence/Contents), JV(Existence/Contents), Job
Switches, User Switches, Datapool(Contents) and Restart Mode should be offered

Technical Documentation 19

EasyCODE Table of Contents

51 ErrorHandling
Components: PET
Version: ab V5.0
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: no

Example: ErrorHandling=yes

Consequences: Specifies whether the constructs Action Block and EXIT-ABNORMAL should be offered
and whether the constructs Procedure and Internal Procedure should have an abnormal end.

52 Tabs
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: <n>
Default: 8

Example: Tabs=4

Consequences: Specifies the configuration of the Basic parser concerning tabulator spaces. When a source is
read, tabulator signs will be replaced by the number of blanks required to reach the next
tabulator position. The tabulator positions are multiples of the specified value.

53 RemoveSpaces
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: 0|1|2|3
Default: 2

Example: RemoveSpaces=3

Consequences: Specifies the configuration of the Basic parser concerning the elimination of leading blanks.
When a source is read, leading blanks will be eliminated from every line of a text construct
according to various strategies.
0 ... Leading blanks will not be eliminated.
1 ... The minimum number of leading blanks within a construct sequence will be eliminated.
2 ... The minimum number of leading blanks within a text construct will be eliminated.
3 ... All leading blanks will be eliminated.

54 Program
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: -1|0|<n>
Default: -1

Technical Documentation 20

EasyCODE Table of Contents

Example: Program=500

Consequences: Specifies the configuration of the Basic parser concerning the refinement of the entire
structure diagram. When a source is read, programs may be pushed down according to
various strategies.

Effects: When you enter the value -1, the structure diagram will not be pushed down. When you enter
the value 0, the structure diagram will always be pushed down. Any other whole number
higher than 0 will have the effect that the structure diagram will be pushed down only when
the specified number of lines is exceeded by this area. The following refinement strategy will
be applied: An attempt is made to push down the structure diagram from the “bottom“; a
refinement will be considered just one line in the next level. This means: If e.g. an IF
construct, its THEN branch and its ELSE branch are to be pushed down only if they contain
at least 20 lines each, and each of the two branches contains e.g. 11 lines, then the individual
branches will not be pushed down, but the entire IF will be pushed down. If, however, the IF
contains a THEN and an ELSE branch containing 25 lines each with the same refinement
specifications, the individual branches, but not the entire IF, will be pushed down.

55 BeginEnd
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: -1|0|<n>
Default: 0

Example: BeginEnd=50

Consequences: Specifies the configuration of the Basic parser concerning the refinement of BEGIN...END.
When a source is read, these constructs may be pushed down according to various strategies.

Effects: See chapter 54

56 Trap
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: -1|0|<n>
Default: 0

Example: Trap=50

Consequences: Specifies the configuration of the Basic parser concerning the refinement of
TRAP...END TRAP. When a source is read, these constructs may be pushed down according
to various strategies.

Effects: See chapter 54

Technical Documentation 21

EasyCODE Table of Contents

57 Type
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: -1|0|<n>
Default: 0

Example: Type=50

Consequences: Specifies the configuration of the Basic parser concerning the refinement of
TYPE...END TYPE. When a source is read, these constructs may be pushed down according
to various strategies.

Effects: See chapter 54

58 Function
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: -1|0|<n>
Default: 0

Example: Function=50

Consequences: Specifies the configuration of the Basic parser concerning the refinement of
FUNCTION...END FUNCTION. When a source is read, these constructs may be pushed
down according to various strategies.

Effects: See chapter 54

59 PrivateFunction
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: -1|0|<n>
Default: 0

Example: PrivateFunction=50

Consequences: Specifies the configuration of the Basic parser concerning the refinement of
PRIVATE FUNCTION...END FUNCTION. When a source is read, these constructs may be
pushed down according to various strategies.

Effects: See chapter 54

Technical Documentation 22

EasyCODE Table of Contents

60 Sub
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: -1|0|<n>
Default: 0

Example: Sub=50

Consequences: Specifies the configuration of the Basic parser concerning the refinement of
SUB...END SUB. When a source is read, these constructs may be pushed down according to
various strategies.

Effects: See chapter 54

61 PrivateSub
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: -1|0|<n>
Default: 0

Example: PrivateSub=50

Consequences: Specifies the configuration of the Basic parser concerning the refinement of
PRIVATE SUB...END SUB. When a source is read, these constructs may be pushed down
according to various strategies.

Effects: See chapter 54

62 SingleIfWithoutElse
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: -1|0
Default: -1

Example: SingleIfWithoutElse=0

Consequences: Specifies the configuration of the Basic parser concerning the refinement of one-line IF
constructs without an ELSE branch. (In one-line IF constructs, both the THEN and the ELSE
branch will be in the same line as the IF, there will not be an END IF). When a source is
read, these constructs may be pushed down according to various strategies.

Effects: See chapter 54

Technical Documentation 23

EasyCODE Table of Contents

63 SingleIfWithElse
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: -1|0
Default: -1

Example: SingleIfWithElse=0

Consequences: Specifies the configuration of the Basic parser concerning the refinement of one-line IF
constructs with an ELSE branch. (In one-line IF constructs, both the THEN and the ELSE
branch will be in the same line as the IF, there will not be an END IF). When a source is
read, these constructs may be pushed down according to various strategies.

Effects: See chapter 54

64 BlockIf
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: -1|0|<n>
Default: 20

Example: BlockIf=50

Consequences: Specifies the configuration of the Basic parser concerning the refinement of IF...END IF
without ELSEIF branches. When a source is read, these constructs may be pushed down
according to various strategies.

Effects: See chapter 54

65 MultipleIf
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: -1|0|<n>
Default: 20

Example: MultipleIf=50

Consequences: Specifies the configuration of the Basic parser concerning the refinement of
IF...ELSEIF...END IF (with ELSEIF branches). When a source is read, these constructs may
be pushed down according to various strategies.

Effects: See chapter 54

Technical Documentation 24

EasyCODE Table of Contents

66 Then
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: -1|0|<n>
Default: 20

Example: Then=50

Consequences: Specifies the configuration of the Basic parser concerning the refinement of THEN branches.
When a source is read, these constructs may be pushed down according to various strategies.

Effects: See chapter 54

67 ElseIf
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: -1|0|<n>
Default: 20

Example: ElseIf=50

Consequences: Specifies the configuration of the Basic parser concerning the refinement of ELSEIF
branches. When a source is read, these constructs may be pushed down according to various
strategies.

Effects: See chapter 54

68 Else
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: -1|0|<n>
Default: 20

Example: Else=50

Consequences: Specifies the configuration of the Basic parser concerning the refinement of ELSE branches.
When a source is read, these constructs may be pushed down according to various strategies.

Effects: See chapter 54

Technical Documentation 25

EasyCODE Table of Contents

69 SelectCase
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: -1|0|<n>
Default: 20

Example: SelectCase=50

Consequences: Specifies the configuration of the Basic parser concerning the refinement of
SELECT CASE...END SELECT ELSE. When a source is read, these constructs may be
pushed down according to various strategies.

Effects: See chapter 54

70 Case
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: -1|0|<n>
Default: 20

Example: Case=50

Consequences: Specifies the configuration of the Basic parser concerning the refinement of CASE branches.
When a source is read, these constructs may be pushed down according to various strategies.

Effects: See chapter 54

71 CaseElse
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: -1|0|<n>
Default: 20

Example: CaseElse=50

Consequences: Specifies the configuration of the Basic parser concerning the refinement of CASE ELSE
branches. When a source is read, these constructs may be pushed down according to various
strategies.

Effects: See chapter 54

Technical Documentation 26

EasyCODE Table of Contents

72 For
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: -1|0|<n>
Default: 20

Example: For=50

Consequences: Specifies the configuration of the Basic parser concerning the refinement of FOR...NEXT.
When a source is read, these constructs may be pushed down according to various strategies.

Effects: See chapter 54

73 While
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: -1|0|<n>
Default: 20

Example: While=50

Consequences: Specifies the configuration of the Basic parser concerning the refinement of
WHILE...WEND. When a source is read, these constructs may be pushed down according to
various strategies.

Effects: See chapter 54

74 DoUntil
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: -1|0|<n>
Default: 20

Example: DoUntil=50

Consequences: Specifies the configuration of the Basic parser concerning the refinement of
DO UNTIL...LOOP. When a source is read, these constructs may be pushed down according
to various strategies.

Effects: See chapter 54

Technical Documentation 27

EasyCODE Table of Contents

75 DoWhile
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: -1|0|<n>
Default: 20

Example: DoWhile=50

Consequences: Specifies the configuration of the Basic parser concerning the refinement of
DO WHILE...LOOP. When a source is read, these constructs may be pushed down according
to various strategies.

Effects: See chapter 54

76 Do
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: -1|0|<n>
Default: 20

Example: Do=50

Consequences: Specifies the configuration of the Basic parser concerning the refinement of DO...LOOP.
When a source is read, these constructs may be pushed down according to various strategies.

Effects: See chapter 54

77 LoopUntil
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: -1|0|<n>
Default: 20

Example: LoopUntil=50

Consequences: Specifies the configuration of the Basic parser concerning the refinement of
DO...LOOP UNTIL. When a source is read, these constructs may be pushed down according
to various strategies.

Effects: See chapter 54

Technical Documentation 28

EasyCODE Table of Contents

78 LoopWhile
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: -1|0|<n>
Default: 20

Example: LoopWhile=50

Consequences: Specifies the configuration of the Basic parser concerning the refinement of
DO...LOOP WHILE. When a source is read, these constructs may be pushed down according
to various strategies.

Effects: See chapter 54

79 Ex<n>
Components: COB (easy-cbl.dll)
Version: V5.0 and higher versions
File: EASY-<COMP>.INI
Section: [Exceptions]
Value: <keyword>[,<keyword>]...
Default: none

Example: Ex1=ON OVERFLOW,OVERFLOW
Ex2=ON ERROR

Consequences: Defines an Exception for a Statement.

<n> represents a consecutive number of the Ex entries starting with 1, which must be unique
for each entry.

The first keyword reflects the entire clause, in all other keywords the optional parts are
omitted.

(Since there is a variety of COBOL dialects differing in their range of language, the COBOL
parser must be adjusted to the dialect you use. These adjustments are made in the
[Exceptions] and [Statements] section of the EASY-COB.INI file. The Exceptions of the
COBOL dialect you use must be fully specified, so that the display of the Exception
construct and the recognition of area limits will function correctly.)

80 Stmt<n>
Components: COB (easy-cbl.dll)
Version: V5.0 and higher versions
File: EASY-<COMP>.INI
Section: [Statements]
Value: <keyword>[,<Exception number>]...[,<End-Statement>|*]
Default: none

Example: Stmt1=ACCEPT,2,*
Stmt2=READ,6,7,*
Stmt3=TRACE
Stmt4=PURGE,*

Consequences: Defines a Statement.

<n> represents a consecutive number of the Stmt entries starting with 1, which must be
unique for each entry.

The <keyword> entry defines the Statement.

Technical Documentation 29

EasyCODE Table of Contents

The <Exception number> entries specify which Exceptions - if any - are permitted for the
Statement, with the number corresponding to the consecutive number of the corresponding
entry in the [Exceptions] section.

The <End-Statement> entry defines the end statement of a Statement, if existing, with the
end statement having the form END-<keyword>, if the '*' value is specified.

(Since there is a variety of COBOL dialects differing in their range of language, the COBOL
parser must be adjusted to the dialect you use. These adjustments are made in the
[Exceptions] and [Statements] section of the EASY-COB.INI file. The Statements of the
COBOL dialect you use must be fully specified, so that the structure of the source code can
be correctly identified, especially if optional parts of statements are omitted. If the message
“Unknown statement starting with ..." appears during source analysis, the corresponding
statement is not defined in the [Statements] section.)

81 CallException
Components: COB (easy-cbl.dll)
Version: V5.0 and higher versions
File: EASY-<COMP>.INI
Section: [Statements]
Value: <n>[,<n>]...
Default: none

Example: CallException=1,2

Consequences: Defines the Exceptions permitted for a Call statement.

The values specify which Exceptions are permitted for the Call statement, with the number
corresponding to the consecutive number of the corresponding entry in the [Exceptions]
section.

(Since there is a variety of COBOL dialects differing in their range of language, the COBOL
parser must be adjusted to the dialect you use. These adjustments are made in the
[Exceptions] and [Statements] section of the EASY-COB.INI file. To ensure the correct
display of the Exceptions of the Call statement, the corresponding exceptions must be
specified.)

82 SearchException
Components: COB (easy-cbl.dll)
Version: V5.0 and higher versions
File: EASY-<COMP>.INI
Section: [Statements]
Value: <n>[,<n>]...
Default: none

Example: SearchException=6

Consequences: Defines the Exceptions permitted for a Search statement.

The values specify which Exceptions are permitted for the Search statement, with the number
corresponding to the consecutive number of the corresponding entry in the [Exceptions]
section.

(Since there is a variety of COBOL dialects differing in their range of language, the COBOL
parser must be adjusted to the dialect you use. These adjustments are made in the
[Exceptions] and [Statements] section of the EASY-COB.INI file. To ensure the correct
display of the Exceptions of the Search statement, the corresponding exceptions must be
specified.)

Technical Documentation 30

EasyCODE Table of Contents

83 MoveCommentIntoProgram
Components: COB (easy-cbl.dll)
Version: V5.0 and higher versions
File: EASY-<COMP>.INI
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: no

Example: MoveCommentIntoProgram=yes

Consequences: Specifies whether comments before IDENTIFICATION DIVISION will be considered part of
the Identification Division or remain before the COBOL program construct.

84 AssignCommentToNextDivision
Components: COB (easy-cbl.dll)
Version: V5.0 and higher versions
File: EASY-<COMP>.INI
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: yes

Example: AssignCommentToNextDivision=no

Consequences: Specifies whether comments at the end of a division will be considered part of the next
division (with the exception of the last division).

85 AssignCommentToNextSection
Components: COB (easy-cbl.dll)
Version: V5.0 and higher versions
File: EASY-<COMP>.INI
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: yes

Example: AssignCommentToNextSection=no

Consequences: Specifies whether comments at the end of a section will be considered part of the next section
(with the exception of the last section).

86 AssignCommentToNextParagraph
Components: COB (easy-cbl.dll)
Version: V5.0 and higher versions
File: EASY-<COMP>.INI
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: yes

Example: AssignCommentToNextParagraph=no

Consequences: Specifies whether comments at the end of a paragraph will be considered part of the next
paragraph (with the exception of the last paragraph).

Technical Documentation 31

EasyCODE Table of Contents

87 SeperateCommentBeforeConstruct
Components: COB (easy-cbl.dll)
Version: V5.0 and higher versions
File: EASY-<COMP>.INI
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: yes

Example: SeperateCommentBeforeConstruct=no

Consequences: Specifies whether comments before a construct will be separated from preceding text, i.e.
placed in a separate statement construct.

88 NestCommentIntoLevel
Components: COB (easy-cbl.dll)
Version: V5.0 and higher versions
File: EASY-<COMP>.INI
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: yes

Example: NestCommentIntoLevel=no

Consequences: Specifies whether comments will be pushed down with a construct.

89 AllowSentenceInAArea
Components: COB (easy-cbl.dll)
Version: V5.0 and higher versions
File: EASY-<COMP>.INI
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: yes

Example: AllowSentenceInAArea=no

Consequences: Specifies whether statements beginning in the A area are allowed or whether in this case a
warning is to be issued during analysis.

90 ExpandException
Components: COB (easy-cbl.dll)
Version: V5.0 and higher versions
File: EASY-<COMP>.INI
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: yes

Example: ExpandException=no

Consequences: Specifies whether Exception clauses will be expanded during analysis, if they are abbreviated
in the source. The expanded version will be considered the first alternative of an Exception
clause in the Ex<n> entry (see there).

Technical Documentation 32

EasyCODE Table of Contents

91 LineContinuation
Components: Basic parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: Character for line continuation
Default: none

Example: LineContinuation=_

Consequences: Defines which character indicates the continuation of lines. If this entry is empty, lines will
not be continued. If it is not empty, it will specify the character indicating line continuation.
(Line continuations are not supported e.g. in VisualBasic or AccessBasic, while WordBasic
and MSTest version 3.0 and higher versions support them and for this purpose use the
characters '\' and '_', respectively.)

92 OldMouseInterface
Components: SD
Version: V5.0 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: no

Example: OldMouseInterface=yes

Consequences: Specifies whether the old or new mouse interface will be used. In EasyCODE(SD) V5.0, the
mouse interface was changed to be able to assign context menus to the right mouse button, as
is now common use. This entry makes the old mouse interface available again; in this case,
the context menus will, however, not be available.

93 NestedComments
Components: Pascal parser, Modula/2 parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: yes

Example: NestedComments=no

Consequences: Specifies whether nested comments will be allowed in Pascal or Modula/2 sources.

94 TempJV
Components: JET
Version: ab V5.0
File: EASY-<COMP>.INI
Section: [Settings]
Value: #|@
Default: #

Example: TempJV=@

Consequences: Specifies the default value of „Temporary files/Job variables“. The defined sign is the prefix
for temporary files and temporary jobvariables.

Technical Documentation 33

EasyCODE Table of Contents

95 ParserWINAPI
Components: COB (easy-par.dll)
Version: V5.0 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: no

Example: ParserWINAPI=yes

Consequences: Specifies whether the current version of the Visual COBOL parser (EASY-PAR.DLL)
already supports the WINAPI extensions, i.e. whether the USING keyword is not to be added
to the parameter edges of the CALL and COBOL program constructs by the Visual COBOL
parser interface (yes|true|1 ... add USING, no|false|0 ... do not add USING).

Note: This INI entry comes into effect only when the Visual COBOL parser (EASY-PAR.DLL) is
used, if the EasyCODE(COB) internal parser (EASY-CBL.DLL) is used, this entry is
ignored. See also the notes for EasyCODE(COB) concerning the INI entry „Parser“.

96 Keyword<n>
Components: C/C++
Version: V5.0 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: <keyword>|<keyword>()
Default: none

Example: Keyword1=‘except()’

Consequences: <keyword> defines a keyword, the optional brackets following this entry indicate whether the
keyword may be followed by a bracket expression belonging to the keyword. For a single
keyword only one of the two options may be used; you must not use both of them at the same
time.

<n> represents a consecutive number of the keyword entries starting with 1, which must be
unique for each entry.

If you make these entries, the corresponding keywords (including all following comments)
will be displayed in statement constructs, so that language extensions which otherwise might
be misinterpreted will be displayed correctly (e.g. Structured Exception Handling, MFC
extensions, etc.).

97 GenEndProgram
Components: COB
Version: V5.01 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: yes

Example: GenEndProgram=no

Technical Documentation 34

EasyCODE Table of Contents

Consequences: Specifies whether the keyword "END PROGRAM" should be generated at the end of a
COBOL-program. Some COBOL85 compilers do not support this keyword so you can switch
off ist generation with this entry. In this case you can only use one COBOL Program
construct in your structure diagram.

98 SaveAfterGen
Components: DS, COB, SPX
Version: V5.01 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: yes

Example: SaveAfterGen=no

Consequences: Specifies the status of the "incl save" checkbox in the "Generate as" dialog window after
starting the the application

99 SaveAfterGenAll
Components: DS, COB, SPX, JET, PET
Version: V5.01 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: yes

Example: SaveAfterGenAll=no

Consequences: Specifies whether a file should be saved after generation with the "Generate all" command.
To save is useful if the line numbers created during generation should be saved in the internal
file format. On the other side you must not save the file, if the internal file should not be
younger than the generated file.

100 PrtType
Components: SD
Version: V5.01 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: 1|2
Default: 1

Example: PrtType=2

Consequences: Specifies the default value for "Type" in the "Print" dialog window (1…Communication
Plan, 2…Additional documents). This entry is will be read when the application is started.

101 PrtArea
Components: All structure diagram editors, SD
Version: V5.01 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value (<V6.0): 1|3|4
Value (>=V6.0) 1|3|4|6
Default: 4

Example: PrtArea=1

Consequences: Specifies the default value for "Area" in the "Print" dialog window (1 … Current
segment/level, 3 … Selected area, 4 … Entire structure diagram/communication plan,
6 ... Structure list). This entry is will be read when the application is started.

Technical Documentation 35

EasyCODE Table of Contents

102 PrtLowerSegments
Components: All structure diagram editors, SD
Version: V5.01 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: yes

Example: PrtLowerSegments=no

Consequences: Specifies the default value for "Including lower segments/levels" in the "Print" dialog
window. This entry is will be read when the application is started.

103 PrtMaxDepth
Components: All structure diagram editors, SD
Version: V5.01 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: 0|<n>
Default: keiner

Example: PrtMaxDepth=3

Consequences: Specifies the default value for "Maximum segment/level depth " in the "Print" dialog
window. This entry is will be read when the application is started.

104 PrtPageHeader
Components: All structure diagram editors, SD
Version: V5.01 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: yes

Example: PrtPageHeader=no

Consequences: Specifies the default value for "Page header" in the "Print" dialog window. This entry is will
be read when the application is started.

105 PrtStartPageNum
Components: All structure diagram editors, SD
Version: V5.01 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: <n>
Default: 1

Example: PrtStartPageNum=27

Consequences: Specifies the default value for "Page numbers start at" in the "Print" dialog window. This
entry is will be read when the application is started.

Technical Documentation 36

EasyCODE Table of Contents

106 PrtFitIntoPage
Components: All structure diagram editors, SD
Version: V5.01 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: no

Example: PrtFitIntoPage=yes

Consequences: Specifies the default value for "Fit into page" in the "Print" dialog window. This entry is will
be read when the application is started.

107 PrtMinFontSize
Components: All structure diagram editors, SD
Version: V5.01 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: <n>
Default: 6

Example: PrtMinFontSize=1

Consequences: Specifies the default value for "Minimal font size" in the "Print" dialog window. This entry
is will be read when the application is started.

108 PrtPreviewList
Components: All structure diagram editors
Version: V5.01 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: 0|1|2
Default: 0

Example: PrtPreviewList=2

Consequences: Specifies the default value for "Segments" in the Preview of the "Print" dialog window. This
entry is will be read when the application is started.

109 RepPaths
Components: SD
Version: V5.01 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: yes

Example: RepPaths=no

Consequences: Specifies the default value for "With paths" in the "Report" dialog window. This entry is
used when the application is started with the "Report" option in the command line.

Technical Documentation 37

EasyCODE Table of Contents

110 RepComments
Components: SD
Version: V5.01 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: yes

Example: RepComments=no

Consequences: Specifies the default value for "With comments" in the "Report" dialog window. This entry
is used when the application is started with the "Report" option in the command line.

111 RepDocs
Components: SD
Version: V5.01 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: yes

Example: RepDocs=no

Consequences: Specifies the default value for "With supplementary documents" in the "Report" dialog
window. This entry is used when the application is started with the "Report" option in the
command line.

112 RepVarRefList
Components: SD
Version: V5.01 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: yes

Example: RepVarRefList=no

Consequences: Specifies the default value for "Variable refinements" in the "Report" dialog window. This
entry is used when the application is started with the "Report" option in the command line.

113 RepAlphaList
Components: SD
Version: V5.01 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: yes

Example: RepAlphaList=no

Consequences: Specifies the default value for "Alphabetic lists" in the "Report" dialog window. This entry
is used when the application is started with the "Report" option in the command line.

Technical Documentation 38

EasyCODE Table of Contents

114 CtrlZ
Components: COB (easy-cbl.dll)
Version: V5.01 and higher versions
File: EASY-<COMP>.INI
Section: [ParseOptions]
Value: Err|Eof|EofAtEnd
Default: EofAtEnd

Example: CtrlZ=Err

Consequences: Specifies the behaviour of the parser when the sign ^Z (0x1A) occurs in the source file.
CtrlZ=Err means that an error message is created when ^Z occurs in the source file.
CtrlZ=Eof means that the first ^Z in the file stands for end-of-file. If this ^Z sign is not the
end of the file, the source code may not be correct.
CtrlZ=EofAtEnd means that the ^Z sign is interpreted as end-of-file when it is the last sign in
the file and therefore no error message is created. If the sign occurs within the file an error
message is created.

115 ECComment (SPX parser)
Components: ABAP parser, Basic parser (SPX)
Version: V5.11 and higher versions
File: EASY-<COMP>.INI
Section: [ParseOptions]
Value: "<text>"
Default: "Easy"

Example: ECComment="######"

Consequences: Specifies the layout of EasyCODE comments. This entry is meaningful during analysis of a
source file. The layout of the EasyCODE comments in the source can be specified for the
parser using this entry. When generating a source the EasyCODE comments are created by
the corresponding GenStrings. Remember that the leading comment symbol, the following
blank as the terminating symbol for the type the comment and the preceding blank can not be
modified by this entry.Only the text in between is modified. Those parts that can not be
modified are defined by the parser and have to be generated by the GenStrings accordingly.
The text specified by this entry must also match with those defined in the GenStrings.
The following characters (with the described meaning) may be used as the terminating
symbol for the type of the EasyCODE comment:
„V“ (with succeeding EasyCODE(SPX) version, modification date and short information)
means that these informationen is not interpreted by the parser. Furthermore not automatic
segmentation is made. The segmentation is created by the corresponding EasyCODE
comment.
„-“ seperates two statement constructs.
„(“ indicates the start of a segment. The segment header follows this symbol on the same
line. Succeeding „(“-comments are interpreted as one segment start with a multiline segment
header.
 „)“ indicates the end of a segment.
„:“ indicates the start of a block.
„;“ indicates the end of a block.
„!“ (ABAP) or „?“ (Basic) indicate the start of the body of a segment or block.

Technical Documentation 39

EasyCODE Table of Contents

116 ECComment
Components: ASM, COL, C, C++, DS
Version: V5.01 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: "<text>"
Default (ASM): "-- EASYCODE(ASM)"
Default (COL): "-- EASYCODE(COL)"
Default (C/C++):"EasyCODE"
Default (DS): "EasyCODE(DS)"

Example: ECComment="######"

Consequences: Specifies the look of the EasyCODE comments. This entry is used for analysis as well as for
the generation of the file.

117 AltECComment
Components: ASM, COL, C, C++, DS
Version: V5.01 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: "<text>"
Default (ASM): "-- EasyCODE(ASM)"
Default (COL): "-- EasyCODE(COL)"
Default (C/C++):"EasyCODE"
Default (DS): "EasyCODE(DS)"

Example: ECComment="###"

Consequences: Specifies an alternative EasyCODE-comment an. This entry is used only for analysis of a file
to have compatibility to previous EasyCODE formats.

118 AlignTextLines
Components: COB (easy-cbl.dll)
Version: V5.01 and higher versions
File: EASY-<COMP>.INI
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: no

Example: AlignTextLines=yes

Consequences: Specifies whether the lines in a text construct should be aligned or left as they are in the
source file.

Technical Documentation 40

EasyCODE Table of Contents

119 WrapComments
Components: PET
Version: V5.01 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: no

Example: WrapComments=yes

Consequences: Specifies whether comments should be overrun according to the actual indent and the
maximum line length for SDF commands/statements when a JOB file is generated.

120 CriticalPrograms
Components: JET, PET
Version: V5.01 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: <programmname>[,<programmname>,...]
Default: keiner

Example: CriticalPrograms=PERCON

Consequences: Specifies programs that have critical statements concerning the line make-up because white
spaces are created when the following line is indented. This white spaces may cause
programm errors when the file is generated. Statements for programs that are specified with
this entry will not be indented in folllowing lines.

121 InLineComment
Components: COB (easy-cbl.dll)
Version: V5.11 and higher versions
File: EASY-<COMP>.INI
Section: [ParseOptions]
Value: "<text>"
Default: none

Example: InLineComment ="*>"

Consequences: Specifies whether in-line comments are supported and specifies the character string
indicating these comments.

Technical Documentation 41

EasyCODE Table of Contents

122 SdfDoorsDll
Components: JET, PET
Version: V6.0 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: <full path name>
Default: none

Example: SdfDoorsDll =C:\ SNICOMSV\SDF.DLL

Consequences: Specifies the full path name of the SDF-Doors DLL. If this entry contains a valid path name
of an SDF-Doors DLL, the SDF-Doors cooperation is enabled. That means that the editor for
SDF commands and statements contained in SDF-Doors is used. Furthermore the SDF-Doors
specific menu items (e.g. BS2000 file access) and functionality (e.g. on-line syntax file) are
enabled. If this entry is empty or invalid, the SDF editor contained in EasyCODE(JET/PET)
is used, the SDF-Doors specific menu items and functionality are not available.

123 PrtSaveSpace
Components: All structure diagram editors
Version: V6.0 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: yes

Example: PrtSaveSpace=no

Consequences: Specifies the default value for "Save space" in the "Print" dialog window. This entry is will
be read when the application is started.

124 PushDownVar
Components: Pascal parser, Modula/2 parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: no

Example: PushDownVar=yes

Consequences: Specifies whether variable declarations should be pushed down.

125 PushDownConst
Components: Pascal parser, Modula/2 parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: no

Example: PushDownConst=yes

Consequences: Specifies whether constants declarations should be pushed down.

Technical Documentation 42

EasyCODE Table of Contents

126 PushDownType
Components: Pascal parser, Modula/2 parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: no

Example: PushDownType=yes

Consequences: Specifies whether type declarations should be pushed down.

127 PushDownProcedureBody
Components: Pascal parser, Modula/2 parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: no

Example: PushDownProcedureBody=yes

Consequences: Specifies whether the body of procedure should be pushed down.

128 PushDownFunctionBody
Components: Pascal parser, Modula/2 parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: no

Example: PushDownFunctionBody=yes

Consequences: Specifies whether the body of a function should be pushed down.

129 PushDownInterface
Components: Pascal parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: no

Example: PushDownInterface=yes

Consequences: Specifies whether interfaces should be pushed down.

130 PushDownInitialization
Components: Pascal parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: no

Example: PushDownInitialization=yes

Consequences: Specifies whether initializations should be pushed down.

Technical Documentation 43

EasyCODE Table of Contents

131 PushDownImplementation
Components: Pascal parser (SPX)
Version: V4.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: no

Example: PushDownImplementation=yes

Consequences: Specifies whether implementations should be pushed down.

132 OnlineSFCheck
Components: JET, PET
Version: V6.0 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: yes

Example: OnlineSFCheck=no

Consequences: Specifies whether all SDF commands/statements should be checked when generating if the
online syntax file is used, or just those that have been modified. Checking all
commands/statements is necessary if changes in the content of the online syntax file or
changes of privileges of the BS2000 connection are possible (default). To increase
performance checking of commands/statements may be restricted to those
commands/statements that have changed. For security reasons this is not recommended
(errors resulting from changes in the syntax file or the privileges may not be recognized).

133 EncloseResource
Components: PET
Version: V6.0 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: no

Example: EncloseResource=yes

Consequences: Specifies whether the constructs resulting from the construct „Resource“ should be enclosed
by a BEGIN-BLOCK/END-BLOCK construct.

134 EncloseProgramCall
Components: PET
Version: V6.0 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: no

Example: EncloseProgramCall=yes

Consequences: Specifies whether the constructs resulting from the construct „Program Call“ should be
enclosed by a BEGIN-BLOCK/END-BLOCK construct.

Technical Documentation 44

EasyCODE Table of Contents

135 CaseAsFrames
Components: Modula/2 parser (SPX)
Version: V5.1 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: no

Example: CaseAsFrames=yes

Consequences: Specifies whether the statement CASE should be converted into nested Frame consructs in
the structure diagram. Otherwise the statement CASE is converted into the construct CASE.
(By default the „natural“ conversion to a CASE construct is used. In Modula/2 this
conversion may be considered inappropriate for the specific reason that some Modula/2
compilers make a difference between an empty and a missing ELSE branch.)

136 HelpFile<n>
Components: All structure diagram editors
Version: V6.0 and higher versions
File: EASY-<COMP>.INI
Section: [HelpFileList]
Value: [<alias for help file>,]<full path name of help file>
Default: none

Example: HelpFile1=MFC Reference,c:\msvc151\help\mfc.hlp

Consequences: Defines a help file for the functionality „Help on selected text“.

<n> represents a consecutive number of the HelpFile entries starting with 1, which must be
unique for each entry.

The first optional part defines the alias for the help file to be used in the corresponding pop-
up menu. The second mandatory part defines the full path name of the help file. Both parts
are seperated by a comma. If the first part is missing, the second one will be used for the pop-
up menu too.

137 EditRedimX
Components: All structure diagram editors
Version: V6.0 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: <n>
Default: 8

Example: EditRedimX=1

Consequences: When direct editing in the structure diagram is used this entry defines the amount for resizing
the edit control in x-direction if a line becomes to long to be fully displayed in the current
edit control. Possible values: 1 to 65535, units: average width of a character.

This entry may be set to 1 on high-performance PCs to make the resizing more smooth. On
slow machines a larger value should be used to prevent interruption of editing due to the slow
redimensioning and repainting.

Technical Documentation 45

EasyCODE Table of Contents

138 EditRedimY
Components: All structure diagram editors
Version: V6.0 and higher versions
File: EASY-<COMP>.INI
Section: [Settings]
Value: <n>
Default: 1

Example: EditRedimY=1

Consequences: When direct editing in the structure diagram is used this entry defines the amount for resizing
the edit control in y-direction if the number of lines becomes to large to be fully displayed in
the current edit control. Possible values: 1 to 65535, units: line height.

This entry may be set to 1 on high-performance PCs to make the resizing more smooth. On
slow machines a larger value should be used to prevent interruption of editing due to the slow
redimensioning and repainting.

139 InlineAssembler
Components: C/C++
Version: V6.0 and higher versions
File: EASY-<KOMP>.INI
Section: [Settings]
Value: "<keyword>"
Default: "asm"

Example: InlineAssembler=""

Consequences: Defines the character string that is used to recognize Inline-Assembler blocks in a C/C++
source. If this entry is present but empty the recognition of Inline-Assembler blocks is
disabled completly. The keyword „asm“ (used in MS VC++) is treated as normal text in this
case. If this entry is not empty it is used instead of the default character string for the
recognition of Inline-Assembler blocks.

140 PrintMono
Components: All structure diagram editors
Version: V6.0 and higher versions
File: EASY-<KOMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: no

Example: PrintMono=yes

Consequences: Specifies whether the structure diagram should be printed in black and white even if there are
other colors specified. This option is used to get a readable printout if there are color
combinations defined for the screen for optical reasons, that would produce a non readable
printout.

Technical Documentation 46

EasyCODE Table of Contents

141 Tab2Space
Components: PL1/SPL4-Parser (SPX)
Version: V6.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: <n>
Default: 8

Example: Tab2Space=4

Consequences: Specifies the configuration of the PL1/SPL4 parser concerning tabulator spaces. When a
source is read, tabulator signs will be replaced by the number of blanks required to reach the
next tabulator position. The tabulator positions are multiples of the specified value.

142 BeepOnLines
Components: PL1/SPL4-Parser (SPX)
Version: V6.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: <n>
Default: 0

Example: BeepOnLines=100

Consequences: A value greater than 0 means that the PL1/SPL4 parser generates a beep on all lines that are
multiples of the given value. A value of 0 means that no beep is generated.

143 FirstCol
Components: PL1/SPL4-Parser (SPX)
Version: V6.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: natürliche Zahl
Default: 2

Example: FirstCol=1

Consequences: Defines the first column in the source to be interpreted. All columns before are truncated.
(This entry is necessary because PL1/SPL4 sources are column orientated.)

144 LastCol
Components: PL1/SPL4-Parser (SPX)
Version: V6.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: natürliche Zahl
Default: 72

Example: LastCol=80

Consequences: Defines the last column in the source to be interpreted. All columns behind are truncated.
(This entry is necessary because PL1/SPL4 sources are column orientated.)

Technical Documentation 47

EasyCODE Table of Contents

145 IgnoreEntry
Components: PL1/SPL4-Parser (SPX)
Version: V6.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: yes

Example: IgnoreEntry=no

Consequences: Specifies whether the Entry statement should be ignored. If the Entry statement is not ignored
it will be converted to a frame construct. For the Entry statement may cause recognition and
representation problems for technical reasons it is possible to ignore the statement and treat it
as normal text. For security reasons this is the default behaviour.

146 LowerText
Components: PL1/SPL4-Parser (SPX)
Version: V6.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: no

Example: LowerText=yes

Consequences: Specifies whether the PL1/SPL4 parser should put large text constructs into seperate
segments.

147 PROC_Level
Components: PL1/SPL4-Parser (SPX)
Version: V6.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: yes

Example: PROC_Level=no

Consequences: Specifies whether the PL1/SPL4 parser should put procedures and functions into seperate
segments.

148 THEN_Level
Components: PL1/SPL4-Parser (SPX)
Version: V6.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: no

Example: THEN_Level=yes

Consequences: Specifies whether the PL1/SPL4 parser should put THEN branches into seperate segments.

Technical Documentation 48

EasyCODE Table of Contents

149 ELSE_Level
Components: PL1/SPL4-Parser (SPX)
Version: V6.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: no

Example: ELSE_Level=yes

Consequences: Specifies whether the PL1/SPL4 parser should put ELSE branches into seperate segments.

150 WHEN_Level
Components: PL1/SPL4-Parser (SPX)
Version: V6.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: no

Example: WHEN_Level=yes

Consequences: Specifies whether the PL1/SPL4 parser should put WHEN branches into seperate segments.

151 WHILE_Level
Components: PL1/SPL4-Parser (SPX)
Version: V6.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: no

Example: WHILE_Level=yes

Consequences: Specifies whether the PL1/SPL4 parser should put WHILE bodies into seperate segments.

152 TO_Level
Components: PL1/SPL4-Parser (SPX)
Version: V6.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: no

Example: TO_Level=yes

Consequences: Specifies whether the PL1/SPL4 parser should put TO bodies into seperate segments.

153 UNTIL_Level
Components: PL1/SPL4-Parser (SPX)
Version: V6.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: no

Example: UNTIL_Level=yes

Consequences: Specifies whether the PL1/SPL4 parser should put UNTIL bodies into seperate segments.

Technical Documentation 49

EasyCODE Table of Contents

154 ENTRY_Level
Components: PL1/SPL4-Parser (SPX)
Version: V6.0 and higher versions
File: Configuration file (.CFG)
Section: [ParseOptions]
Value: yes|no|true|false|1|0
Default: no

Example: ENTRY_Level=yes

Consequences: Specifies whether the PL1/SPL4 parser should put ENTRY bodies into seperate segments.

155 EmptyLineBeforeECComment
Components: C/C++
Version: V6.0 and higher versions
File: EASY-<KOMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: no

Example: EmptyLineBeforeECComment =yes

Consequences: Specifies whether an empty line should be generated before specific EasyCODE comments
(segments, functions, etc.) for optical reasons.

156 RemoveEmptyLines
Components: ASM
Version: V6.0 and higher versions
File: EASY-<KOMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: yes

Example: RemoveEmptyLines =no

Consequences: Specifies whether empty lines should be deleted after editing a text.

157 BrowserSupportDef
Components: C/C++, COB, SPX
Version: V6.0 and higher versions
File: EASY-<KOMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: no

Example: BrowserSupportDef =yes

Consequences: Specifies whether the menu item „View-Definition“ is visible. If a Browser DLL is
configured and this entry is set to „yes“, the menu item is visible. If no Browser DLL is
configured and this entry is set to „yes“, the menu item is visible but grayed. If this entry is
set to „no“, the menu item is not visible.

Technical Documentation 50

EasyCODE Table of Contents

158 BrowserSupportRef
Components: C/C++, COB, SPX
Version: V6.0 and higher versions
File: EASY-<KOMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: no

Example: BrowserSupportRef =yes

Consequences: Specifies whether the menu item „View-References“ is visible. If a Browser DLL is
configured and this entry is set to „yes“, the menu item is visible. If no Browser DLL is
configured and this entry is set to „yes“, the menu item is visible but grayed. If this entry is
set to „no“, the menu item is not visible.

159 BrowserDLL
Components: C/C++, COB, SPX
Version: V6.0 and higher versions
File: EASY-<KOMP>.INI
Section: [Settings]
Value: Filename of Browser DLL
Default: None

Example: BrowserDLL =c:\easy\easy-pv.dll

Consequences: Specifies the name of the Browser DLL. If a Browser DLL is configured and the correct
entry points are provided, it is possible to activate the Browser functionality (View-
Definition/References).

160 AddInMenu
This entry is used for the Add-In-Interface. It is documented there.

161 AddInCmd<n>
This entry is used for the Add-In-Interface. It is documented there.

162 MouseCmd<n>
This entry is used for the Add-In-Interface. It is documented there.

163 SpecialLines
This entry is used for the Add-In-Interface. It is documented there.

164 PrintDelay
Components: All structure diagram editors, SD
Version: V6.0 and higher versions
File: EASY-<KOMP>.INI
Section: [Settings]
Value: <n>
Default: 0

Example: PrintDelay=5

Consequences: Specifies minimal duration in seconds for a printout to last from the begin to the end. If a
printout is faster, the the remaining time will be consumed before the printout is finished.
This delay may be necessary, if small printouts are lost (due to an operating system bug, e.g.
on WindowsNT 3.50 with a local printer and a small printout).

Technical Documentation 51

EasyCODE Table of Contents

165 PreprocessorColumn
Components: C/C++
Version: V6.0 and higher versions
File: EASY-<KOMP>.INI
Section: [Settings]
Value: <n>
Default: -1

Example: PreprocessorColumn=1

Consequences: Specifies the column for preprocessor statements. If n is greater or equal 1, preprocessor
statements will be generated exactly in this column when saving the structure diagram.
Otherwise (n less than 1) the preprocessor statements will be generated using the same indent
as for normal code. (This entry may be necessary for some old compilers, that accept
preprocessor statements only in certain columns, e.g. column 1.)

166 FtCommand
Components: All structure diagram editors, EasyFT
Version: V6.01 and higher versions
File: EASY-<KOMP>.INI
Section: [Settings]
Value: "<command name>"
Default: "DOSNCP" for FT-PCD (SNI), "DFT" for DFT (INTRA-SYS), "NCOPY" for SIAM-FT-DOS

(COMPUTER KONTOR)

Example: FtCommand="ncopy"

Consequences: Specifies the filetransfer command to be used for the filetransfers FT-PCD, DFT, or SIAM-
FT-DOS. (Note: This entry is only valid for these filetransfer products!) For some filetransfer
products may change the names of the filetransfer commands from version to version (e.g.
FT-PCD: older versions NCOPY, now DOSNCP), it is possible to make the necessary
modifications via this entry.

167 JavaMode
Components: C++
Version: V6.001 and higher versions
File: EASY-<KOMP>.INI
Section: [Settings]
Value: yes|no|true|false|1|0
Default: no

Example: JavaMode=yes

Consequences: Specifies whether the component C++ should work in Java mode. The programming
language Java is similar to C++ in many areas. It differs from C++ only in a few details. So
Java sources can be edited using the component C++ if it is switched to Java mode with this
entry. In Java mode some constructs are not present, the default filename extension is
different, and some keywords are treated in a different way.

Technical Documentation 52

EasyCODE Table of Contents

168 Command Line Options and Parameters
The following options and parameters may be entered into the command line for loading EasyCODE and will
modify application behavior accordingly. The bold characters { } | [] in the syntax description are metasigns
and not part of the option or parameter (meaning: { | } ... alternatives, [] optional elements), text in italics in
the syntax description indicates a value to be specified. In general, all options and parameters are case-
insensitive.

169 <file_name>
Components: All structure diagram editors, SD
Version: V3.1 and higher versions
Syntax: <file_name>

Example: easy-sp.exe myfile.sp

Consequences: The first parameter in the command line (argument not preceded by / or -) will be interpreted
as the filename. The application tries to open this file immediately after its start.

170 Embedding
Components: All structure diagram editors
Version: V3.5 and higher versions
Syntax: {-|/}Embedding

Example: easy-sp.exe /Embedding

Consequences: This option is reserved for OLE; with this option the OLE client application calls the OLE
server application. Therefore, this option must not be specified by the user! (If the
application is called with this option by the user instead of the OLE client application, the
result will be unpredictable behavior!)

171 Initialize
Components: All structure diagram editors, SD
Version: V3.5 and higher versions
Syntax: {-|/}Initialize

Example: easy-sp.exe /Initialize

Consequences: When this option is used, the Registration Database and the WIN.INI file will be re-
initialized by the application after its call. The same entries will be made which are also
made during the setup procedure, while entries modified by the user will be overwritten. In
this case, the application will not open a window, but will be closed immediately after the
appropriate entries have been updated. (This option is also be used during single-user setup
and workstation setup to make the appropriate entries.)

172 Print
Components: All structure diagram editors, SD
Version: V3.5 and higher versions
Syntax: {-|/}P[rint]

Example: easy-sp.exe /p abc.sp

Consequences: If this option is used, the specified file will be printed. The main window of the application
will not be opened, only the dialog box for cancelling printing will appear. The application
will be closed immediately after printing. The following applies to V4.0 and higher versions:
By default, the standard printer settings will be used. You may, however, also make an
appropriate entry into the INI file so that the Print dialog window for modifying the printer
settings will be opened (see INI entry PrintFileStandard). To V3.5x, the following applies:
The Print dialog window will always appear.

Technical Documentation 53

EasyCODE Table of Contents

173 PrintStructure
Components: All structure diagram editors
Version: V6.0 and higher versions
Syntax: {-|/}P[rint]S[tructure][=<index>]

Example: easy-spx.exe /ps=1 abc.spx

Consequences: If this option is used, the structure list of the file given as a parameter will be printed. If an
index is specified within this option, the structure list specified by this index will be printed.
(The index is defined by the order of the entries in the combo box for the type of the structure
list contained in the structure list window. The index starts with 0, which is also the default,
if no index is given.) As with the option Print the following applies: The main window of the
application will not be opened, only the dialog box for cancelling printing will appear. The
application will be closed immediately after printing. By default, the standard printer settings
will be used. You may, however, also make an appropriate entry into the INI file so that the
Print dialog window for modifying the printer settings will be opened (see INI entry
PrintFileStandard). The same effect as with this option may also be achieved using the option
Print with the INI entries PrtArea and LevelListType (is created by „Save settings...“) set
properly.

174 Report
Components: SD
Version: V5.01 and higher versions
Syntax: {-|/}R[eport]

Example: easy-sd.exe /r abc.sd

Consequences: If this option is used, the Report for the specified file will be printed. The main window of
the application will not be opened, only the dialog box for cancelling printing will appear.
The application will be closed immediately after printing.
By default, the standard report settings that can be modified in the Ini file (see entrys
"Rep…) will be used. The settings can also be made in the Report dialog window that
appears when the corresponding entry in the Ini file is set (see PrintReportStandard).

175 Line/Construct
Components: All structure diagram editors
Version: V4.0 and higher versions
Syntax: {-|/}L[ine]=<line_number>

Example: easy-c.exe /l=200 abc.c

Consequences: If this option is used, the application tries to display this line number immediately after the
specified file has been started. If the line number does not exist, the preceding line number
will be displayed automatically (without further inquiry with the help of a message window,
because it is not possible in the initialization stage for technical reasons). If you start the
application without specifying a filename or with a file that does not include line numbers,
this option will be ignored. (The latter always applies to SP.)

176 Inifile
Components: All structure diagram editors, SD
Version: V4.0 and higher versions
Syntax: {-|/}I[nifile]=<file_name>

Example: easy-spx.exe /i=spx-pas.ini

Consequences: If this option is used, the application will not use the default INI file (EASY-<COMP>.INI
stored in the Windows directory), but the file specified in this option as its INI file.

Technical Documentation 54

EasyCODE Table of Contents

(Especially in SPX, this allows different INI files to be used for different languages or, more
generally, different INI files to be used by different persons.)

177 Generate
Components: DS, SPX, COB, JET, PET
Version: V5.01 and higher versions
Syntax: {-|/}G[enerate][=<dateiname>]

Example: easy-spx.exe /g=abc.txt abc.spx

Consequences: This option causes the generation of the specified file. If a filename for the generated file is
also specified this name will be used (addition of working directory if no path is specified).
Otherwise the name for the generated file will be created from the file to be generated, the
path for the source files (from the Ini file) and the file extension (also from the Ini file).

178 GenerateAll
Components: DS, SPX, COB, JET, PET
Version: V5.01 and higher versions
Syntax: {-|/}G[enerate]a[ll]

Example: easy-spx.exe /ga

Consequences: This option causes the execution of the "Generate all" command. See also the Help function.

179 Save
Components: All structure diagram editors
Version: V5.01 and higher versions
Syntax: {-|/}S[ave][=<file_name>]

Example: easy-spx.exe /s=abc.spx abc.etf

Consequences: This option causes the saving of the specified file. If a filename for the saved file is also
specified this name will be used (addition of working directory if no path is specified).
Otherwise the name for the saved file will be created from the file to be saved, the path for
the internal files (resp. source files for C++, ASM, COL) (from the Ini file) and the file
extension (also from the Ini file).

180 Export
Components: All structure diagram editors
Version: V5.01 and higher versions
Syntax: {-|/}E[xport][=<file_name>]

Example: easy-spx.exe /e=abc.etf abc.spx

Consequences: This option causes the export of the specified file. If a filename for the exported file is also
specified this name will be used (addition of working directory if no path is specified).
Otherwise the name for the exported file will be created from the file to be exported, the path
for the ETF files (from the Ini file) and the file extension (also from the Ini file).

Technical Documentation 55

EasyCODE Table of Contents

181 OpenFileDlg
Components: All structure diagram editors, SD
Version: V6.0 and higher versions
Syntax: {-|/}O[penFileDlg][=[<path>][<filter>]]

Example: easy-spx.exe /o=c:\work*.clp

Consequences: This option causes the „Open file“ dialog box to be shown immediately after the start of the
application. If present the path and the filter given in this option are used for initializing the
dialog box (directory, filter). A given filter is ignored in SD, for only *.SD is allowed as a
file extension in SD.

182 ReadOnly
Components: All structure diagram editors, SD
Version: V6.0 and higher versions
Syntax: {-|/}R[ead]O[nly]

Example: easy-sp.exe /ro abc.spx

Consequences: This option causes the file given to the application via the command line to be opened in
read-only mode. The option is only available in the network installation, for the single user
installation does not support the read-only mode when opening files.

183 Project
Components: C/C++, COB, SPX
Version: V6.0 and higher versions
Syntax: {-|/}Pr[o]j[ect]

Example: easy-cpp.exe /prj=d:\myproj\myproj.pvx

Consequences: This option causes the project database given to the application via this command line option
to be used instead of that from the INI file.

184 AddIn
This command line option is used for the Add-In-Interface. It is documented there.

Technical Documentation 56

	Table of Contents
	Customization
	1 Ini/Cfg Entries
	2 LockDrives
	3 UnLockDrives
	4 SuppressSourceConvMsg
	5 SuppressSPXConvMsg (SuppressSPConvMsg)
	6 SuppressJETConvMsg
	7 SuppressETFConvMsg
	8 FtAvailable
	9 SourceFileFormat
	10 EtfFileFormat
	11 EtfWrapSDF
	12 JobLog
	13 DeleteWorkFiles
	14 Compiler
	15 Parser
	16 ParserDebugFile
	17 FtShowIconic
	18 RetainReplaceCheckboxState
	19 PushDownClasses
	20 PushDownFunctions
	21 PrintFileStandard
	22 PrintReportStandard
	23 InitialIndent
	24 BeginComment
	25 EndComment
	26 BeginObject
	27 EndObject
	28 Sequence
	29 BeginIteration
	30 EndIteration
	31 BeginOption
	32 EndOption
	33 BeginSelection
	34 EndSelection
	35 SeparateCases
	36 SuppressDoInProcedureCall
	37 SuppressLastReturnInProcedure
	38 Ctl3D
	39 FtDirectory
	40 LockSourceOnWarnings
	41 CompressBlanks
	42 OpenFileListLength
	43 InsertFileListLength
	44 FtWFTRecSize
	45 FtWFTRecForm
	46 DataPool
	47 RestartLogic
	48 Resource
	49 ProgramCall
	50 SpecialConditions
	51 ErrorHandling
	52 Tabs
	53 RemoveSpaces
	54 Program
	55 BeginEnd
	56 Trap
	57 Type
	58 Function
	59 PrivateFunction
	60 Sub
	61 PrivateSub
	62 SingleIfWithoutElse
	63 SingleIfWithElse
	64 BlockIf
	65 MultipleIf
	66 Then
	67 ElseIf
	68 Else
	69 SelectCase
	70 Case
	71 CaseElse
	72 For
	73 While
	74 DoUntil
	75 DoWhile
	76 Do
	77 LoopUntil
	78 LoopWhile
	79 Ex<n>
	80 Stmt<n>
	81 CallException
	82 SearchException
	83 MoveCommentIntoProgram
	84 AssignCommentToNextDivision
	85 AssignCommentToNextSection
	86 AssignCommentToNextParagraph
	87 SeperateCommentBeforeConstruct
	88 NestCommentIntoLevel
	89 AllowSentenceInAArea
	90 ExpandException
	91 LineContinuation
	92 OldMouseInterface
	93 NestedComments
	94 TempJV
	95 ParserWINAPI
	96 Keyword<n>
	97 GenEndProgram
	98 SaveAfterGen
	99 SaveAfterGenAll
	100 PrtType
	101 PrtArea
	102 PrtLowerSegments
	103 PrtMaxDepth
	104 PrtPageHeader
	105 PrtStartPageNum
	106 PrtFitIntoPage
	107 PrtMinFontSize
	108 PrtPreviewList
	109 RepPaths
	110 RepComments
	111 RepDocs
	112 RepVarRefList
	113 RepAlphaList
	114 CtrlZ
	115 ECComment (SPX parser)
	116 ECComment
	117 AltECComment
	118 AlignTextLines
	119 WrapComments
	120 CriticalPrograms
	121 InLineComment
	122 SdfDoorsDll
	123 PrtSaveSpace
	124 PushDownVar
	125 PushDownConst
	126 PushDownType
	127 PushDownProcedureBody
	128 PushDownFunctionBody
	129 PushDownInterface
	130 PushDownInitialization
	131 PushDownImplementation
	132 OnlineSFCheck
	133 EncloseResource
	134 EncloseProgramCall
	135 CaseAsFrames
	136 HelpFile<n>
	137 EditRedimX
	138 EditRedimY
	139 InlineAssembler
	140 PrintMono
	141 Tab2Space
	142 BeepOnLines
	143 FirstCol
	144 LastCol
	145 IgnoreEntry
	146 LowerText
	147 PROC_Level
	148 THEN_Level
	149 ELSE_Level
	150 WHEN_Level
	151 WHILE_Level
	152 TO_Level
	153 UNTIL_Level
	154 ENTRY_Level
	155 EmptyLineBeforeECComment
	156 RemoveEmptyLines
	157 BrowserSupportDef
	158 BrowserSupportRef
	159 BrowserDLL
	160 AddInMenu
	161 AddInCmd<n>
	162 MouseCmd<n>
	163 SpecialLines
	164 PrintDelay
	165 PreprocessorColumn
	166 FtCommand
	167 JavaMode

	168 Command Line Options and Parameters
	169 <file_name>
	170 Embedding
	171 Initialize
	172 Print
	173 PrintStructure
	174 Report
	175 Line/Construct
	176 Inifile
	177 Generate
	178 GenerateAll
	179 Save
	180 Export
	181 OpenFileDlg
	182 ReadOnly
	183 Project
	184 AddIn

